Sequences and series


Sum of natural numbers

The sum \( S_n \) of the first \( n \) natural numbers may be wrriten as $$\begin{aligned} S_n =& 1 + 2 + 3 + \ldots + n-2 + n-1 + n \hspace{0.5cm} \text{or} \\ S_n =& n + n-1 + n-2 + \ldots + 3 + 2 + 1. \end{aligned}$$ Therefore $$\begin{aligned} 2 S_n =& n+1 + n+1 + n+1 + \ldots + n+1 + n+1 + n+1 \\ =& n(n+1). \\ \end{aligned}$$ Which implies that $$S_n = \frac{1}{2}n(n+1) = \triangle_n,$$ where \( \triangle_n \) is the \( n \)-th triangular number.

\( \triangle_1 = 1 \) \( \triangle_2 = 3 \) \( \triangle_3 = 6 \)
\( \triangle_4 = 10 \) \( \triangle_5 = 15 \)
\( \triangle_6 = 21 \)

Arithmetic progressions

An arithmetic progression, with first term \( a \), is a sequence of numbers in which the difference between consecutive terms is a constant \( d \) known as the common difference i.e. $$a, a+d, a+2d, a+3d, \ldots.$$ The \( r^{\text{th}} \) term of the sequence is given by $$ u_r = a + (r-1)d. $$

The sum \( S_n \) of the first \( n \) terms of an arithmetic progression may be written as $$ S_n = a + a+d + a+2d + \ldots + l-2d + l-d + l,$$ where the last term \( l \) is given by \( l = a + (n-1)d \). The sum of the first \( n \) terms may also be written as $$ S_n = l + l-d + l-2d + \ldots + a+2d + a+d + a.$$ Therefore $$\begin{aligned} 2 S_n =& a+l + a+l + a+l + \ldots + a+l + a+l + a+l \\ =& n(a+l). \end{aligned}$$ This implies that $$\begin{aligned} S_n =& \frac{1}{2}n(a+l) = \frac{1}{2}n\left(a + a + (n-1)d \right) \\ =& \frac{1}{2}n(2a + (n-1)d). \end{aligned}$$ For example the sum \( S = 1 + 3 + 5 + 7 + 9 + 11 \) has \( a = 1 \), \( d = 2 \) and \( n = 6 \), therefore $$ S = \frac{1}{2} \cdot 6 \left( 2 + 5 \cdot 2 \right) = 3 \cdot 12 = 36. $$

Polygonal numbers

As we saw earlier $$ 1 + 2 + 3 + 4 + \ldots + n = \frac{1}{2} n (n+1) = \triangle_n $$ gives the \( n \)-th triangular number.

The sum of the first \( n \) terms of the arithmetic progression with first term \( 1 \) and common difference \( 2 \) gives the \( n \)-th square number since $$ 1 + 3 + 5 + 7 + \ldots + 2n-1 = \\ \frac{1}{2} n \left( 2 + (n-1) \cdot 2 \right) = \frac{1}{2} n (2n) = n^2 = \square_n. $$

\( \square_1 = 1 \) \( \square_2 = 4 \) \( \square_3 = 9 \)
\( \square_4 = 16 \) \( \square_5 = 25 \)

The sum of the first \( n \) terms of the arithmetic progression with first term \( 1 \) and common difference \( 3 \) gives the \( n \)-th pentagonal number since $$ 1 + 4 + 7 + 10 + \ldots + 3n-2 = \\ \frac{1}{2} n \left( 2 + (n-1) \cdot 3 \right) = \frac{1}{2} n (3n-1) = \char"2B20_n. $$

\( \char"2B20_1 = 1 \) \( \char"2B20_2 = 5 \)
\( \char"2B20_3 = 12 \)

The sum of the first \( n \) terms of the arithmetic progression with first term \( 1 \) and common difference \( 4 \) gives the \( n \)-th hexagonal number since $$ 1 + 5 + 9 + 13 + \ldots + 4n-3 = \\ \frac{1}{2} n \left( 2 + (n-1) \cdot 4 \right) = n (2n-1) = \char"2B21_n. $$

\( \char"2B21_1 = 1 \) \( \char"2B21_2 = 6 \)
\( \char"2B21_3 = 15 \)

The sum of the first \( n \) terms of the arithmetic progression with first term \( 1 \) and common difference \( p - 2 \) gives the \( n \)-th \( p \)-sided polygonal number since $$ 1 + p-1 + 2p -3 + \ldots + (p-2)n-(p-3) = \\ \frac{1}{2} n \left( 2 + (n-1) \cdot (p-2) \right) = \frac{1}{2} p n (n-1) - n(n-2) = P_n. $$

Sum of triangular numbers

The sum of the first \( n \) triangular numbers is $$ S_n = 1 + 3 + 6 + \ldots + \frac{(n-2)(n-1)}{2} + \frac{(n-1)n}{2} + \frac{n(n+1)}{2}$$ such that \( S_1 = 1 \), \( S_2 = 4 \), \( S_3 = 10 \), \( S_4 = 20 \) and so on. This means that $$ 2 S_n = 2 + 6 + 12 + \ldots + (n-2)(n-1) + (n-1)n + n(n+1). $$ Also, since \( \triangle_n = n + \triangle_{n-1} \), $$ \begin{aligned} S_n =& \triangle_n + \triangle_{n-1} + \triangle_{n-2} + \ldots + \triangle_3 + \triangle_2 + \triangle_1, \\ =& n + 2 \triangle_{n-1} + \triangle_{n-2} + \ldots + \triangle_3 + \triangle_2 + \triangle_1, \\ =& n + 2(n-1) + 3 \triangle_{n-2} + \ldots + \triangle_3 + \triangle_2 + \triangle_1, \\ & \hspace{2cm} \vdots \\ =& n + 2(n-1) + 3(n-2) + \ldots + (n-2) \cdot 3 + (n-1) \cdot 2 + n \cdot 1. \\ \end{aligned}$$ Therefore $$ \begin{aligned} 3 S_n =& n+2 + 2(n+2) + 3(n+2) + \ldots + (n-2)(n+2) + (n-1)(n+2) + n(n+2), \\ =& (n+2)\left[1 + 2 + 3 + \ldots + (n-2) + (n-1) + n \right] \\ =& (n+2) \triangle_n. \end{aligned}$$ This implies that $$ S_n = \frac{1}{3}(n+2) \triangle_n = \frac{1}{6} n(n+1)(n+2) = \text{Tet}_n, $$ where \( \text{Tet}_n \) is the \( n \)-th tetrahedral number.

Sum of square numbers

The sum of the first \( n \) square numbers is $$ S_n = 1 + 4 + 9 + \ldots + (n-2)^2 + (n-1)^2 + n^2 = \sum_{k=1}^n k^2. $$ The sum of two consecutive triangular numbers is a square number since $$ \triangle_n + \triangle_{n-1} = \frac{n(n+1)}{2} + \frac{(n-1)n}{2} = \frac{1}{2} \left(n^2 + n + n^2 - n \right) = n^2. $$ This means we may write the sum of the first \( n \) square numbers as $$\begin{aligned} S_n =& \sum_{k=1}^n k^2 = \sum_{k=1}^n \left( \triangle_k + \triangle_{k-1} \right) = \sum_{k=1}^n \triangle_k + \sum_{k=1}^n \triangle_{k-1} \\ =& \text{Tet}_n + \text{Tet}_{n-1} \\ =& \frac{1}{6} n(n+1)(n+2) + \frac{1}{6} (n-1)n(n+1) \\ =& \frac{1}{6} n(n+1) \left( n+2 + n-1 \right) \\ =& \frac{1}{6} n(n+1)(2n+1) = \text{Pyr}_n, \end{aligned}$$ where \( \text{Pyr}_n \) is the \( n \)-th pyramidal number.

Faulhaber's formula

The sum of the first \( n \) \( p \)-th powers, $$ S_n = 1^p + 2^p + 3^p + \ldots + n^p = \sum_{k=1}^n k^p, $$ is given by Faulhaber's formula $$ S_n = \frac{1}{p+1} \sum_{r=0}^p \begin{pmatrix} p+1 \\ r \end{pmatrix} B_r n^{p-r+1}, $$ where \( \begin{pmatrix} p+1 \\ r \end{pmatrix} \) is the binomial coefficient $$ \frac{(p+1)!}{r!(p+1-r)!} $$ and \( B_r \) is the \( r \)-th Bernoulli number .

The first few Bernoulli numbers are: $$ B_0 = 1, \quad B_1 = -\frac{1}{2}, \quad B_2 = \frac{1}{6}, \quad B_3 = B_5 = B_7 = B_9 \ldots = 0, \quad B_4 = B_8 = -\frac{1}{30}, \quad B_6 = \frac{1}{42}, \quad B_{10} = \frac{5}{66}, \ldots $$

Pascal's triangle

Pascal's triangle is a triangular array of numbers in which the \( n \)-th row contains the coefficients of the binomial expansion of \( (x+y)^n \). The \( r \)-th entry in the \( n \)-th row is given by the binomial coefficient \( \begin{pmatrix} n \\ r \end{pmatrix} = \frac{n!}{r!(n-r)!} \). The first few rows of Pascal's triangle are:

Pascal's triangle Sum of row
1 \( 1 = 2^0 \)
11 \( 2 = 2^1 \)
121 \( 4 = 2^2 \)
1331 \( 8 = 2^3 \)
14641 \( 16 = 2^4 \)
1510 1051 \( 32 = 2^5 \)
161520 1561 \( 64 = 2^6 \)

The sum of the entries in the \( n \)-th row of Pascal's triangle is the \( n \)-th power of \( 2 \) that is \( 2^n \).

1 \( \char"2BA6 \) Natural
11 \( \char"2BA6 \) Triangular
121 \( \char"2BA6 \) Tetrahedral
1331
14641
15101051
1615201561

The columns of Pascal's triangle list the natural, triangular, tetrahedral etc numbers.

1
\( \char"2197 \)1 2
1 \( \char"2197 \)\( \char"2197 \)35
11 \( \char"2197 \)\( \char"2197 \)813
121 \( \char"2197 \)\( \char"2197 \)
1331
14641
15101051
1615201561

The sums of the diagonals of Pascal's triangle give the Fibonacci numbers.

Fibonacci numbers

The Fibonacci numbers may be defined by the recurrence relation $$ F_0=0, \quad F_1=1 \quad \text{and} \quad F_n = F_{n-1} + F_{n-2}, $$ such that \( F_2 = 1 \), \( F_3 = 2 \), \( F_4 = 3 \), \( F_5 = 5 \), \( F_6 = 8 \), etc. This gives the sequence $$ 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, \ldots $$

To find a closed form for \( F_n \) we may try a geometric sequence such that \( F_n = r^n \) with \(r \neq 0 \). Substituting this into the recurrence relation we find $$ r^n = r^{n-1} + r^{n-2} \implies r^2 - r - 1 = 0 \implies r = \frac{1 \pm \sqrt{5}}{2}. $$

If we let \( \phi = \frac{1}{2} (1+\sqrt{5}) \approx 1.618 \) and \( \psi = \frac{1}{2} (1-\sqrt{5}) \approx -0.618 \) then generally $$ F_n = A \phi^n + B \psi^n, $$ where \( A \) and \( B \) are constants. To find these constants we use the initial conditions, since \( F_0 = A + B = 0 \) and \( F_1 = A \phi + B \psi = 1 \) it follows that \( B = -A \) and \( A = 1 / \sqrt{5} \) therefore $$ F_n = \frac{1}{\sqrt{5}} \left( \phi^n - \psi^n \right). $$

The Fibonacci numbers have the property $$ \begin{aligned} F_0 =& F_2 -F_1, \\ F_1 =& F_3 -F_2, \\ F_2 =& F_4 -F_3, \\ & \vdots \\ F_n =& F_{n+2} - F_{n+1}. \\ \end{aligned}$$ Using this property we can write the sum of the first \( n \) Fibonacci numbers as $$ F_0 + F_1 + F_2 + \ldots + F_n = F_{n+2} - F_1 = F_{n+2} - 1. $$

The Fibonacci numbers also satisfy the relation $$ \begin{aligned} F_{n+1} - \phi F_n =& \frac{1}{\sqrt{5}} \left( \phi^{n+1} - \psi^{n+1} \right) - \frac{\phi}{\sqrt{5}} \left( \phi^{n} - \psi^{n} \right) \\ =& \psi^n \left( \frac{-\psi + \phi}{\sqrt{5}} \right) = \psi^n. \end{aligned} $$ Therefore $$ \frac{F_{n+1}}{F_n} - \phi = \frac{\psi^n}{F_n} \implies \frac{F_{n+1}}{F_n} = \phi + \frac{\psi^n}{F_n}. $$ Since \( F_n > 1 \) and \( |\psi| < 1 \) it follows that \( \psi^n / F_n \to 0 \) as \( n \to \infty \), therefore $$ \frac{F_{n+1}}{F_n} \to \phi \quad \text{as} \quad n \to \infty. $$