Sequences and series
Sum of natural numbers
The sum \( S_n \) of the first \( n \) natural numbers may be wrriten as $$\begin{aligned} S_n =& 1 + 2 + 3 + \ldots + n-2 + n-1 + n \hspace{0.5cm} \text{or} \\ S_n =& n + n-1 + n-2 + \ldots + 3 + 2 + 1. \end{aligned}$$ Therefore $$\begin{aligned} 2 S_n =& n+1 + n+1 + n+1 + \ldots + n+1 + n+1 + n+1 \\ =& n(n+1). \\ \end{aligned}$$ Which implies that $$S_n = \frac{1}{2}n(n+1) = \triangle_n,$$ where \( \triangle_n \) is the \( n \)-th triangular number.
\( \triangle_1 = 1 \) | \( \triangle_2 = 3 \) | \( \triangle_3 = 6 \) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
\( \triangle_4 = 10 \) | \( \triangle_5 = 15 \) | |||||||||
\( \triangle_6 = 21 \) | ||||||||||
Arithmetic progressions
An arithmetic progression, with first term \( a \), is a sequence of numbers in which the difference between consecutive terms is a constant \( d \) known as the common difference i.e. $$a, a+d, a+2d, a+3d, \ldots.$$ The \( r^{\text{th}} \) term of the sequence is given by $$ u_r = a + (r-1)d. $$
The sum \( S_n \) of the first \( n \) terms of an arithmetic progression may be written as $$ S_n = a + a+d + a+2d + \ldots + l-2d + l-d + l,$$ where the last term \( l \) is given by \( l = a + (n-1)d \). The sum of the first \( n \) terms may also be written as $$ S_n = l + l-d + l-2d + \ldots + a+2d + a+d + a.$$ Therefore $$\begin{aligned} 2 S_n =& a+l + a+l + a+l + \ldots + a+l + a+l + a+l \\ =& n(a+l). \end{aligned}$$ This implies that $$\begin{aligned} S_n =& \frac{1}{2}n(a+l) = \frac{1}{2}n\left(a + a + (n-1)d \right) \\ =& \frac{1}{2}n(2a + (n-1)d). \end{aligned}$$ For example the sum \( S = 1 + 3 + 5 + 7 + 9 + 11 \) has \( a = 1 \), \( d = 2 \) and \( n = 6 \), therefore $$ S = \frac{1}{2} \cdot 6 \left( 2 + 5 \cdot 2 \right) = 3 \cdot 12 = 36. $$
Polygonal numbers
As we saw earlier $$ 1 + 2 + 3 + 4 + \ldots + n = \frac{1}{2} n (n+1) = \triangle_n $$ gives the \( n \)-th triangular number.
The sum of the first \( n \) terms of the arithmetic progression with first term \( 1 \) and common difference \( 2 \) gives the \( n \)-th square number since $$ 1 + 3 + 5 + 7 + \ldots + 2n-1 = \\ \frac{1}{2} n \left( 2 + (n-1) \cdot 2 \right) = \frac{1}{2} n (2n) = n^2 = \square_n. $$
\( \square_1 = 1 \) | \( \square_2 = 4 \) | \( \square_3 = 9 \) | |||||||
---|---|---|---|---|---|---|---|---|---|
\( \square_4 = 16 \) | \( \square_5 = 25 \) | ||||||||
The sum of the first \( n \) terms of the arithmetic progression with first term \( 1 \) and common difference \( 3 \) gives the \( n \)-th pentagonal number since $$ 1 + 4 + 7 + 10 + \ldots + 3n-2 = \\ \frac{1}{2} n \left( 2 + (n-1) \cdot 3 \right) = \frac{1}{2} n (3n-1) = \char"2B20_n. $$
\( \char"2B20_1 = 1 \) | \( \char"2B20_2 = 5 \) | |||||||
---|---|---|---|---|---|---|---|---|
\( \char"2B20_3 = 12 \) | ||||||||
The sum of the first \( n \) terms of the arithmetic progression with first term \( 1 \) and common difference \( 4 \) gives the \( n \)-th hexagonal number since $$ 1 + 5 + 9 + 13 + \ldots + 4n-3 = \\ \frac{1}{2} n \left( 2 + (n-1) \cdot 4 \right) = n (2n-1) = \char"2B21_n. $$
\( \char"2B21_1 = 1 \) | \( \char"2B21_2 = 6 \) | |||||||
---|---|---|---|---|---|---|---|---|
\( \char"2B21_3 = 15 \) | ||||||||
The sum of the first \( n \) terms of the arithmetic progression with first term \( 1 \) and common difference \( p - 2 \) gives the \( n \)-th \( p \)-sided polygonal number since $$ 1 + p-1 + 2p -3 + \ldots + (p-2)n-(p-3) = \\ \frac{1}{2} n \left( 2 + (n-1) \cdot (p-2) \right) = \frac{1}{2} p n (n-1) - n(n-2) = P_n. $$
Sum of triangular numbers
The sum of the first \( n \) triangular numbers is $$ S_n = 1 + 3 + 6 + \ldots + \frac{(n-2)(n-1)}{2} + \frac{(n-1)n}{2} + \frac{n(n+1)}{2}$$ such that \( S_1 = 1 \), \( S_2 = 4 \), \( S_3 = 10 \), \( S_4 = 20 \) and so on. This means that $$ 2 S_n = 2 + 6 + 12 + \ldots + (n-2)(n-1) + (n-1)n + n(n+1). $$ Also, since \( \triangle_n = n + \triangle_{n-1} \), $$ \begin{aligned} S_n =& \triangle_n + \triangle_{n-1} + \triangle_{n-2} + \ldots + \triangle_3 + \triangle_2 + \triangle_1, \\ =& n + 2 \triangle_{n-1} + \triangle_{n-2} + \ldots + \triangle_3 + \triangle_2 + \triangle_1, \\ =& n + 2(n-1) + 3 \triangle_{n-2} + \ldots + \triangle_3 + \triangle_2 + \triangle_1, \\ & \hspace{2cm} \vdots \\ =& n + 2(n-1) + 3(n-2) + \ldots + (n-2) \cdot 3 + (n-1) \cdot 2 + n \cdot 1. \\ \end{aligned}$$ Therefore $$ \begin{aligned} 3 S_n =& n+2 + 2(n+2) + 3(n+2) + \ldots + (n-2)(n+2) + (n-1)(n+2) + n(n+2), \\ =& (n+2)\left[1 + 2 + 3 + \ldots + (n-2) + (n-1) + n \right] \\ =& (n+2) \triangle_n. \end{aligned}$$ This implies that $$ S_n = \frac{1}{3}(n+2) \triangle_n = \frac{1}{6} n(n+1)(n+2) = \text{Tet}_n, $$ where \( \text{Tet}_n \) is the \( n \)-th tetrahedral number.
Sum of square numbers
The sum of the first \( n \) square numbers is $$ S_n = 1 + 4 + 9 + \ldots + (n-2)^2 + (n-1)^2 + n^2 = \sum_{k=1}^n k^2. $$ The sum of two consecutive triangular numbers is a square number since $$ \triangle_n + \triangle_{n-1} = \frac{n(n+1)}{2} + \frac{(n-1)n}{2} = \frac{1}{2} \left(n^2 + n + n^2 - n \right) = n^2. $$ This means we may write the sum of the first \( n \) square numbers as $$\begin{aligned} S_n =& \sum_{k=1}^n k^2 = \sum_{k=1}^n \left( \triangle_k + \triangle_{k-1} \right) = \sum_{k=1}^n \triangle_k + \sum_{k=1}^n \triangle_{k-1} \\ =& \text{Tet}_n + \text{Tet}_{n-1} \\ =& \frac{1}{6} n(n+1)(n+2) + \frac{1}{6} (n-1)n(n+1) \\ =& \frac{1}{6} n(n+1) \left( n+2 + n-1 \right) \\ =& \frac{1}{6} n(n+1)(2n+1) = \text{Pyr}_n, \end{aligned}$$ where \( \text{Pyr}_n \) is the \( n \)-th pyramidal number.
Faulhaber's formula
The sum of the first \( n \) \( p \)-th powers, $$ S_n = 1^p + 2^p + 3^p + \ldots + n^p = \sum_{k=1}^n k^p, $$ is given by Faulhaber's formula $$ S_n = \frac{1}{p+1} \sum_{r=0}^p \begin{pmatrix} p+1 \\ r \end{pmatrix} B_r n^{p-r+1}, $$ where \( \begin{pmatrix} p+1 \\ r \end{pmatrix} \) is the binomial coefficient $$ \frac{(p+1)!}{r!(p+1-r)!} $$ and \( B_r \) is the \( r \)-th Bernoulli number .
The first few Bernoulli numbers are: $$ B_0 = 1, \quad B_1 = -\frac{1}{2}, \quad B_2 = \frac{1}{6}, \quad B_3 = B_5 = B_7 = B_9 \ldots = 0, \quad B_4 = B_8 = -\frac{1}{30}, \quad B_6 = \frac{1}{42}, \quad B_{10} = \frac{5}{66}, \ldots $$
Pascal's triangle
Pascal's triangle is a triangular array of numbers in which the \( n \)-th row contains the coefficients of the binomial expansion of \( (x+y)^n \). The \( r \)-th entry in the \( n \)-th row is given by the binomial coefficient \( \begin{pmatrix} n \\ r \end{pmatrix} = \frac{n!}{r!(n-r)!} \). The first few rows of Pascal's triangle are:
Pascal's triangle | Sum of row | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | \( 1 = 2^0 \) | ||||||||||||
1 | 1 | \( 2 = 2^1 \) | |||||||||||
1 | 2 | 1 | \( 4 = 2^2 \) | ||||||||||
1 | 3 | 3 | 1 | \( 8 = 2^3 \) | |||||||||
1 | 4 | 6 | 4 | 1 | \( 16 = 2^4 \) | ||||||||
1 | 5 | 10 | 10 | 5 | 1 | \( 32 = 2^5 \) | |||||||
1 | 6 | 15 | 20 | 15 | 6 | 1 | \( 64 = 2^6 \) |
The sum of the entries in the \( n \)-th row of Pascal's triangle is the \( n \)-th power of \( 2 \) that is \( 2^n \).
1 | \( \char"2BA6 \) | Natural | ||||
1 | 1 | \( \char"2BA6 \) | Triangular | |||
1 | 2 | 1 | \( \char"2BA6 \) | Tetrahedral | ||
1 | 3 | 3 | 1 | |||
1 | 4 | 6 | 4 | 1 | ||
1 | 5 | 10 | 10 | 5 | 1 | |
1 | 6 | 15 | 20 | 15 | 6 | 1 |
The columns of Pascal's triangle list the natural, triangular, tetrahedral etc numbers.
1 | |||||||
\( \char"2197 \) | 1 | 2 | |||||
1 | \( \char"2197 \) | \( \char"2197 \) | 3 | 5 | |||
1 | 1 | \( \char"2197 \) | \( \char"2197 \) | 8 | 13 | ||
1 | 2 | 1 | \( \char"2197 \) | \( \char"2197 \) | |||
1 | 3 | 3 | 1 | ||||
1 | 4 | 6 | 4 | 1 | |||
1 | 5 | 10 | 10 | 5 | 1 | ||
1 | 6 | 15 | 20 | 15 | 6 | 1 |
The sums of the diagonals of Pascal's triangle give the Fibonacci numbers.
Fibonacci numbers
The Fibonacci numbers may be defined by the recurrence relation $$ F_0=0, \quad F_1=1 \quad \text{and} \quad F_n = F_{n-1} + F_{n-2}, $$ such that \( F_2 = 1 \), \( F_3 = 2 \), \( F_4 = 3 \), \( F_5 = 5 \), \( F_6 = 8 \), etc. This gives the sequence $$ 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, \ldots $$
To find a closed form for \( F_n \) we may try a geometric sequence such that \( F_n = r^n \) with \(r \neq 0 \). Substituting this into the recurrence relation we find $$ r^n = r^{n-1} + r^{n-2} \implies r^2 - r - 1 = 0 \implies r = \frac{1 \pm \sqrt{5}}{2}. $$
If we let \( \phi = \frac{1}{2} (1+\sqrt{5}) \approx 1.618 \) and \( \psi = \frac{1}{2} (1-\sqrt{5}) \approx -0.618 \) then generally $$ F_n = A \phi^n + B \psi^n, $$ where \( A \) and \( B \) are constants. To find these constants we use the initial conditions, since \( F_0 = A + B = 0 \) and \( F_1 = A \phi + B \psi = 1 \) it follows that \( B = -A \) and \( A = 1 / \sqrt{5} \) therefore $$ F_n = \frac{1}{\sqrt{5}} \left( \phi^n - \psi^n \right). $$
The Fibonacci numbers have the property $$ \begin{aligned} F_0 =& F_2 -F_1, \\ F_1 =& F_3 -F_2, \\ F_2 =& F_4 -F_3, \\ & \vdots \\ F_n =& F_{n+2} - F_{n+1}. \\ \end{aligned}$$ Using this property we can write the sum of the first \( n \) Fibonacci numbers as $$ F_0 + F_1 + F_2 + \ldots + F_n = F_{n+2} - F_1 = F_{n+2} - 1. $$
The Fibonacci numbers also satisfy the relation $$ \begin{aligned} F_{n+1} - \phi F_n =& \frac{1}{\sqrt{5}} \left( \phi^{n+1} - \psi^{n+1} \right) - \frac{\phi}{\sqrt{5}} \left( \phi^{n} - \psi^{n} \right) \\ =& \psi^n \left( \frac{-\psi + \phi}{\sqrt{5}} \right) = \psi^n. \end{aligned} $$ Therefore $$ \frac{F_{n+1}}{F_n} - \phi = \frac{\psi^n}{F_n} \implies \frac{F_{n+1}}{F_n} = \phi + \frac{\psi^n}{F_n}. $$ Since \( F_n > 1 \) and \( |\psi| < 1 \) it follows that \( \psi^n / F_n \to 0 \) as \( n \to \infty \), therefore $$ \frac{F_{n+1}}{F_n} \to \phi \quad \text{as} \quad n \to \infty. $$